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We study an ecological network composed by a set of interacting populations whose
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a unique solution w—periodic and globally attractive. By following the chain rule
approach combined with the Implicit Function Theorem, we deduce some iden-
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systems having a unique stable equilibrium point. Our findings constitute a first
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1. Introduction
1.1, Preliminaries

The purpose of this note is to study the sensitivity matrix (an explicit
definition will be given later) of a periodic ecological network composed
of n species and described by the following system of ordinary differential
equations:

1= q1{t, 21, .., Tn)s
. (1
T = gn(t,T1, .- Zn),
or equivalently:
& = g(t,z), (2)
with n species, whose densities are defined by = = (%1,...,2,)7 and their

dynamic behavior is described by g(t, %) = {g:(t, %), ...,gn(t,x))T. The
function g(-,-) is assumed to be continuously differentiable with respect to
% and continuous w—periodic with respect to £, t.e.,

gt +w,z) = g(t,z) forany z€R™ and telR. (3)

Several ecological networks with periodic coefficients and periodic so-
lutions have been considered in the mathematical literature, for example:
predator—prey systems and trophic chains have been studied by several
authors as Cui %, Cushing ®, Eilbeck et.al. ¢, Gopalsamy 39, Ortega 16,
Takimoto et.al., 19, Anh %0, Scheﬂ'er et.al 18, Zhongua et.al, 27, Chemostats
have been studied by Wolkowicz ' and Yang 2°, between others.

There exist two types of effects propagated from the i—th species to the
j—th species in the network (1):

o Indirect effects: which are propagated along either a third k-th
species (i.e., © — k — j) or a chain of member species (i.e., 1 —
ky —» ks — ... — kp — jsuch that kg 4,7 forany £ € {1,...,p}).

¢ Direct effects: which are propagated by the direct interactions
between the i-th and j—th species (i.e., i — 7).

The distinction between direct and indirect effects is important. It is
recognized nowadays that the responses of ecological communities to en-
vironmental changes can not be predicted based only on the structure of
direct effects among species. Instead, it is the interplay between direct and
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indirect effects which finally dictates how community responds to pertus-
bations 2. Furthermore, indirect effects could be even more imporéant

than direct effects as drivers of shifts in community structure triggered by
14,23

environmental stimuli

Figure 1. The direct effect propagated from the i~th species ¢ to the j-th species is
represented by the solid line. The indirect effect propagated through the k-th species is
represented by the path composed by the dashed lines.

There exists an extensive theoretical literature devoted to the study of
indirect effects and their relation with direct ones, see e.g., Bender et.al, 1,
Higashi et.al., 19112 and Nakajima °. The concept of sensitivity matrix
(total effects matrix) plays a key role in this scenario.

1.2, Sensitivity matrie: an overview

As pointed out by Borrett et.al. 2, most part of theoretical studies of

indirect effects have considered stationary networks, i.e., time invariant
systems of differential equations of type:

:‘bl = gl(xla s :r:c’n)}
: (4)

_s. d’nzgn(xl:'“amn)

*

where x; and g;(-) are the abundance and the rate of change, respectively,
of the species i € {1,...,n}.
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For simplicity, we consider a shorter notation:
& = g(=), (5)

where z = col(z1,...,%n) and g(z) = (q1(z),. .. ,gn(m))T. Moreover, the
function g: R™ > R™ is sufficiently smooth such that (4) satisfies the follo-
wing properties:

(C1) The network (4) has a unique componentwise positive equilibrium
point * = (zf,...,2}) € Int(R}). Moreover, all the eigenvalues
of the matrix:

Has
A={a;} with a;y= i(:c’"), and ¢,j=1,...,n; (6)
ij
have negative real parts. o
(C2) The perturbed system

#=g(z)+2z withsome z=(z1,...,2.)" €R™, (7)

has s unigue componentwise positive equilibrium #£(z) =
(#1(2),...,%,(2)) € Int(R%), which is dependendent on the per-
turbation z as follows:

i) In absence of perturbation, we have that £(0) = z*.
ii) The derivative 0%&;(z)/0z; exists when the perturbation z is
small in sorme sense.

Remark 1.1. Property (C1) states that the equilibrium z* is locally
asymptotically stable, i.e., there exists ¢ > 0 such that for any solution
z(t) of (4) satisfying {|z(0) —z*|| < e (here, || - || denotes a.norm in R™). It
follows that t_l)iinw z(t) = z*. In addition, the matrix A displays the direct
effects between species in the network.

Remark 1.2. By following the seminal work of Bender et.al. and ! Yodzis
26 the system (7) describes a press perturbation of (5), where the pertur-
bation z; represents a permanent artificial flow (either positive or negative)
introduced to control the abundance of the species z; (i =1,...,n).

Remark 1.3. The property (C2) is a direct consequence of the Implicit
Function Theorem 2. Observe that (C1)—(C2) are satisfied for any Lotka~
Volterra system having a positive stable equlibrium.

Given a disturbance (press perturbation) z; on the i-th species, the
properties (C1)—(C2) allow to study its total effect (direct plus indirect)
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on the j—th species ! by means of the sensitivity matrix S, whose coeffi-
cients s;; represent the sensitivity of the abundance z; to changes in the
perturbation z;, more specifically:

. .0y .
S ={s;;} with Sij':z].%a_‘:j(z) and 4,j=1,...,n (8)

Finally, by using the chain rule (see, e.g., %), it can be deduced that
the matrices 4 and 5, satisfy the following property:

§=-A"1 (9)

which says that the total effects between species can be computed from the
set of direct effects. The invertibility of A is a consequence of (C1).

Remark 1.4. The identity (9) is a useful tool for studying the indirect
effects and its impact in ecologic networks '?, Indeed, the identity says that:
i) the study of the matrix A can describe the changes in population arising
from a press perturbation. ii) An empirical estimation of the coefficients of
the matrix A can be obtained by carrying out a press pertubation to the
network (4).

Nevertheless, a key assumption is that the species are in a locally stable
equilibrium z*, potentially achievable in an homogeneous environment in
time (i.e., described by autonomous differential equations). A question of
particular interest is to extend the previous results to ecological networks
of fluctuating environments and more complex types of equilibria.

In particular, the novelty of this note is to study the sensitivity matrix
of an w—periodic network with an w—periodic equilibrium.

2. Assumptions

The following assumption about of network (1) will play a fundamental
role:

(P1) The network (1) has a unique w-periodic solution denoted by p(t),
which is asymptotically stable, i.e., there exists ¢ > 0 such that for
any solution z(f) of (1) with initial conditions satisfying |lz(0) —
p(O)l] <, it follows that lim (p(t) — z(£)) = 0.

Let us define u(-) = z(:) — p(-) and observe that the linearization of
(1)-(2) along the w+periodic curve solution (¢,p(t)) (with, —co <t < 400)
leads to the linear system

4= A(t)u, (10)
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where the matrix A(t) is defined as follows
. dg;
Aty ={ay(0)} with a5(t) = 5= (t.p(£)- (11)
5

Let ®(t) be the fundamental matrix of (10), i.e., ®{t) = A(t)®(t). By
using Floquet‘'s theory 2%, it follows that there exists a nonsingular w-
periodic matrix P(t) and a constant complex matrix ¢ such that

P(t) = P(t)e??,

and a consequence of (P1) is that all the eigenvalues of Q have negative
real parts. In addition, the change of variables u = P(t)z transforms (10)
nto:

2= Qu T (12)

2.1. Aweraging techniques

Let f: R — R be a continuous w-periodic function. The mean value of
f and its variance, namely M{f} and var{f} are defined respectively, in
analogy to statistical measures as follows (see e.g., Puccia et.al.}7):

M{f} = ifow f(s)ds and var{f} = %fow[f(s)—fv[{f}]zds. (13)

When f and g are continuous w—periodic functions, the covariance be-
tween f and g, is defined by

cov(f,9) = = [ 1706 - MUHIols) - MigHds. (1)

Similar definitions can be given for w—periodic matrices A(t), where each
eniry a;;(t) is a continuous w-periodic function. Indeed

M{a11} M{aiz} --- M{an}
M{A} = M{f””} Miaz} - Moz

M{o1} Mo} -+ M{am)

3. Extending the theory to the periodic case (some results)

In general, the modeling of ecological networks by autonomous system (4) is
a consequence of considering several parameters as constants. Nevertheless,
some -of them can experiment seasonal or cyclic variations (birth rates,
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death rates, migration rates, inputs of resources, etc.). In consequence,
the exclusive use of (4) can limit in some cases the study of direct/indirect
effects described in the previous section. By this reason, we consider the
more general case described by (1).
Let us consider a press perturbation to the network (1)
Ty = gl(t, Liyen. ,:L‘n) 4 21,
3 (15)
T = g’n(ta L1y :wn) + zn.

The implicit function theorem allows us to prove the following result 3:

Proposition 3.1. If (P1) is satisfied and the perturbations z satisfy the
inequality

\/z%+z§+...+zg<5 (16)
for some § > 0 sufficiently small, then the sysiem (15) has o unigue solution
q(t, z) = col (ql(t, ST T/ N (" P zn)), (17

which is continous and w-periodic in t and differentiable in = satisfying
(18). In addition, ¢(t,0) = p(t).

Proposition 3.1 allow us to define a generalized sensitivity matrix as
follows: '
Og;

= {s;(t)} with ;)= 8

—(¢,0), (18)
with ¢;(¢, 2) given by (17).
Lemma 3.1. The sensitivity matriz (18) is w-periodic.

Proof. Let ¢; = (615, 025,...,0n;), where 6;; = 0 when ¢ = j and 0 other-
wise. Observe that:
6%
Jz;

Gt +w,z+ Aej) — q;(t+ w, 2)

—1
—(t+w,z) im A

— ].lm q ( Z + e.?) Q‘&(ta Z)?
A—0 A
where the last identity follows from w-periodicity of g(-, #), ensured by
Proposition 3.1. Imgonsequence, we have that

Bq@

9g:
(t"l- gz—;(t,z)
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and the Lemma follows by letting z = 0. ]

Theorem 3.1. The sensitivity matriz satisfy the identity:
1 W
1 f A@)S() dt = —I. (19)
“ Jo

Given an w-periodic function B(-), we can define its A-weighted average
as follows:

Ma{B} = é fa " AWB®) dt.

On the other hand, we can define an equivalence relation in the set
w-periodic matrices:

S;() ~ Sg() — MA{S]_ - Sz} =0. o

In consequence, the sensitivity matrix has to be in the same equivalence
class of —A(:)~!, which means that S{-) and —A~1(-) differs only in a
function with null A-weighted average.

By using the covariance definition (14) for the matrices A(t) and S(t),
we obtain the following identity:

Corollary 3.1. The sensitivity matric satisfy the identity:
M{S} = —m{a} {1 +cov(4,5)}. (20)
Proof. Observe that

cov(4,8) = = [ 1A~ MIAYIS() ~ MiSY
1 1 /¢
-2 fo (S dr — = fo Afr) drM{S)

_miart f " S(r) dr + M{A}M{S],
W Jo

= —I - M{A}M{S},
where the last identity is ensured by (19). 0
Observe that (4) is a particular case of (1). In this context, (C1)-(C2)

is a particular case of (P1). By using (13), it follows that when A and §
are constants, then cov(4,S) = 0 and (20) reduces to (9).
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4. Conclusion and future directions

The study of time-varying ecological networks presents several difficulties
in comparison with stationary ones. Indeed, from a mathematical point of
view, the network (1) is a non-autonomous ODE system, whose qualitative
theory is far more complex (and less complete) in comparison with the
autonomous case. On the other hand, from an ecological point of view,
Lemma 3.1 suggests that the total effects matrix has cyclical variations:
these facts make interesting and at the same time difficult the study of
direct/indirect effects in (1): to determinate which results obtained for
autonomous models remain valid for time varying ones is an open question.

We have deduced some identities concerning the sensitivity matrix for
an w-periodic ecological network having a unique locally asymptotically
stable periodic solution. The Theorem 3.1 and Corollary 3.1 can be seen
as averaged versions of identity (9).

This note is a first stage to studying indirect effects in time varying
ecological networks. Indeed, several problems remain to be solved. They
are summarized as follows:

e In an w-periodic context, we hope to use identities (19)}-(20) in
order to obtain similar results as those described in Remark 1.4. In
particular, to quantify the relation between direct/indirect effects.

o To consider the network (1) as a perturbation of the averaged sys-
tem:

v=1u=z [ st

This autonomous system ({in special, when has an stable equi-
librium) is interesting since provides another way to consider “in
average” the direct/indirect effects. In this case, it is easy to com-
pute its sensitivity matrix. An open question is to study its relation
with the sensitivity matrix {18).

* It would be of interest to extend this analysis to the case where
the network (1) is Bohr almost periodic 7 with respect to ¢, This is
reasonable since almost periodic motions have biological sense and
its average properties generalizes the periodic ones.

o It is necessary to compare our approach with other works consider-
ing time variable ecological networks: the work of Takimoto et.al.
19 considers % system of one consumer, two resources and one sub-
sidy, which has periodical inputs. The autors employ a method of
time scale separation combined with press perturbations and dis-
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covers that the time scale hierarchy helps to study indirect effects.
In addition, the work of Borret et.al. 2 studies the relation between
the length of paths ¢ «» ky — ks — ... = kp — J and the speed
of propagation of indirect effects by using the technique of network
environment analysis. '

Appendix: Proof of Theorem 3.1
By using the w-periodicity of solution ¢(t, 2}, it follows that

gi{w, 2) — q:(0, ) =/ Gilt,qi(t 2), .y gn(t, 2)) dt + 2w = 0.
0

foranyi=1,...,n.
Differentiating respect to z; and using Leibnitz’s rule, we obtain.

w T, dg; z)) & z
[ L P

= Oz Oz

which can be rewritten as:

3gz(t qlt, 2)) Oax(t,2) ,, _
fo sa o = (21)
where §;; =1ifi=j and di; = 0 otherwise.
On the other hand, the continuity of the functions
agi(tv Q(taz)) an(tﬁz)
in a neighborhood of z =0, implies that
. 0gi{t, q(t, 2)) 391 .
tim SHELLD) b (¢ ) (22)
and
. Og(t z) _ Og
L il waCR (25)
By letting 2z — 0 in (21) and using (22)-(23), it follows that:
/ 5% (t,p(2) 8gu(t,0) ,, _ 5
7} e
0 k-‘ Tk z.?

By using (11) and (18), it follows that this last equality is equivalent to

5 /0 ;aik (t)sk; (V) dt = —&y; o)

which is equivalent to (19) and the Theorém follows.
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