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1. Introduction 

1.1. Preliminaries 

The purpose of this note is to study the sensitivity matrix (an explicit 
definition will be given later) of a periodic ecological network composed 
of n species and described by the following system of ordinary di!ferential 
equations: 

(1) 

or equivalently: 

x = g(t, x), (2) 

with n species, whose densities are defined by x = (XI, . .. ,Xn)T and their 
dynamic behavior is described by g(t,x) = (gl(t,X), ... ,gn(t,X))T The 
function g(.,.) is assumed to be continuously di!ferentiable with respect to 
x and continuous w-periodic with respect tú t, i.e., 

g(t + w, x) = g(t, x) for any x E IRn and t E IR. (3) 

Several ecological networks with periodic coeflicients and periodic so
lutions have been considered in the mathematical literature, for example: 
predator-prey systems and trophic chains have been studied by several 
authors as Cui ., Cushing 5, Eilbeck et. al. 6, Gopalsamy 8,9, Ortega 16, 

Takimoto et.al., 19, Anh 20, Sche!fer et.aI IB , Zhongua et.al .. 27. Chemostats 
have been studied by Wolkowicz 21 and Yang 25, between others. 

There exist two types of e!fects propagated from the i-th species to the 
j-th species in the network (1): 

• Indirect effects: which are propagated along either a third k-th 
species (i.e., i -+ k -+ j) or a chain of member species (i.e., i -+ 
kl -+ k2 -+ ... -+ kp -+ j such that ke o¡f i,j for anye E {l, .. . ,p}) . 

• Direct effects: which are propagated by the direct interactions 
between the i-th and j-th species (i. e., i -+ j). 

The distinction between direct and indirect e!fects is important. It is 
recognized nowadays that the responses of ecological communities to en
vironmental changes can not be predicted based only on the structure of 
direct e!fects among species. Instead, it is the interplay between direct and 
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indirect effects which finally dictates how community responds to pertur
bations 22. Furthermore, indirect effects could be even more important 
than direct effects as drivers of shifts in community structure triggered by 
environmental stimuli 14,23. 

Figure 1. The direct effect propagated from the i-th species i to the j-th species is 
represented by the solid lineo The indirect effect propagated through the k-th species is 
represented by the path composed by the dashed Hnes. 

There exists an extensive theoreticalliterature devoted to the study of 
indirect effects and their relation with direct anes, see e.g., Bender et.al, 1, 
Higashi et.al., 10,11,12 and Nakajima 15. The concept of sensitivity matrix 
(total effects matrix) plays a key role in this scenario. 

1.2. Sensitivity matrix: an overview 

As pointed out by Borrett et.al. 2, most part of theoretical studies of 
indirect effects have considered stationary networks, i.e., time invariant 
systems of differential equations of type: 

{

Xl =gl(X1, ... ,Xn), 

X n = gn(Xl," . ,Xn ) 

(4) 

. '. 
where Xi and gi (.) are the abundance and the rate of change, respectively, 
of the species i E {l, ... ,n}. 
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For simplicity, we consider a shorter notation: 

j; = g(x), (5) 

where x = COI(XI, ... ,Xn) and g(x) = (gl(X), ... ,gn(X))T Moreover, the 
function g: lRn c+ lRn is sufficiently smooth such that (4) satisfies the follo
wing properties: 

(C1) The network (4) has a unique componentwise positive equilibrium 
point x' = (xi, ... ,x~) E Int(lR'¡J Moreover, all the eigenvalues 
of the matrix: 

A={aij} with aij= (){)9i(X'), and i,j=l, ... ,n; (6) 
Xj 

have negative real parts. 
(C2) The perturbed system 

j; = g(x) + z, with sorne Z = (ZI, ... , znf E lRn
, (7) 

has a unique componentwise positive equilibrium x(z) 
(XI (z), ... , xn(z)) E Int(lR'¡.), which is dependendent on the per
turbation z as follows: 

i) In absence of perturbation, we have that X(O) = x'. 
ii) The derivative ()Xi(Z)/{)Zj exists when the perturbation Z is 

small in sorne sense. 

Remark 1.1. Property (C1) states that the equilibrium x' is locally 
asymptotically stable, i.e., there exists E: > O such that for any solution 
x(t) of (4) satisfying Ilx(O) -x'll < E: (here, 11·11 denotes a.norm in lRn). It 
follows that lim x(t) = x'. In addition, the matrix A displays the direct 

t--t+oo 
effects between species in the network. 

Remark 1.2. By following the seminal work of Bender et.al. and 1 Yodzis 
26, the system (7) describes a press perlurbation of (5), where the pertur
bation Zi represents a permanent artificial fiow (either positive or negative) 
introduced to control the abundance of the species Xi (i = 1, ... , n). 

Remark 1.3. The property (C2) is a direct consequence of the Implicit 
Function Theorem 13. Observe that (C1 )-( C2) are satisfied for any Lotka
Volterra system having a positive stable equlibrium. 

Given a disturbance (press perturbation) Zi on the i-th species, the 
properties (C1)-(C2) allow to study its total effect (direct plus indirect) 
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on the j-th species 15 by means of the sensitivity matrix S, whose coeffi
cients Sij represent the sensitivity of the abundance Xi to changes in the 
perturbation Zj, more specifically: 

S { } . h l' Mi() d" = Si} Wlt Sij = 1m -() z an ~,J = 1, ... , n. 
z-+O Zj 

(8) 

Finally, by using the chain rule (see, e.g., 15), it can be deduced that 
the matrices A and S, satisfy the following property: 

(9) 

which says that the total effects between species can be computed from the 
set of direct effects. The invertibility of A is a consequence of (el). 

Remark 1.4. The identity (9) is a useful tool for studying the indirect 
effects and its impact in ecologic networks 12. Indeed, the identity says that: 
i) the study of the matrix A can describe the changes in population arising 
from a press perturbation. ii) An empirical estimation of the coefficients of 
the matrix A can be obtained by carrying out a press pertubation to the 
network (4). 

Nevertheless, a key assumption is that the species are in a locally stable 
equilibrium x*, potentially achievable in an homogeneous environment in 
time (i. e., described by autonomous differential equations). A question of 
particular interest is to extend the previous results to ecological networks 
of fiuctuating environments and more complex types of equilibria. 

In particular, the novelty of this note is to study the sensitivity matrix 
of an w-periodic network with an w-periodic equilibrium. 

2. Assumptions 

The following assumption about of network (1) will playa fundamental 
role: 

(PI) The network (1) has a unique w-periodic solution denoted by p(t), 
which is asymptotically stable, i.e., there exists e> O such that for 
any solution x(t) of (1) with initial conditions satisfying Ilx(O) -
p(O)11 < e, it follows that lim (p(t) - x(t») = O. 

t-++oo 

Let us define u(·) = xO - pO and observe that the linearization of 
(1)-(2) along the w"periodic curve solution (t,p(t» (with, -00 < t < +00) 
leads to the linear system 

11 = A(t)u, (10) 



78 

where the matrix A(t) is defined as follows 

A(t) = {aij(t)} with aij(t) = ~gi (t,p(t)). 
uXj 

(11) 

Let <I>(t) be the fundamental matrix of (10), i.e., <f1(t) = A(t)<I>(t). By 
using Floquet's theory 24, it follows that there exists a nonsingular w
periodie matrix P(t) and a eonstant eomplex matrix Q sueh that 

<I>(t) = P(t)eQ', 

and a eonsequenee of (PI) is that all the eigenvalues of Q have negative 
real parts. In addition, the ehange of variables u = P(t)z transforms (10) 
into: 

z= Qz. (12) 

2.1. Averaging techniques 

Let f: 1R >-+ 1R be a eontinuous w-periodie funetion. The mean value of 
f and its varianee, namely M {f} and var{f} are defined respeetively, in 
analogy to statistical measures as follows (see e.g., Puecia et.al.'7): 

11W 11w 

M{f} = - f(s)ds and var{f} = - [j(s) -M{f}]2ds. 
w o w o 

(13) 

When f and 9 are continuous w-periodic functions) the covariance be
tween f and g, is defined by 

11w 

eov(f,g) = - [f(s) - M{J}][g(s) - M{g}] ds. 
w o 

(14) 

Similar definitions ean be given for w-periodic matrices A(t), where eaeh 
entry aij(t) is a eontinuous w-periodie funetion. Indeed 

[

M{al1 } M{a'2} ... M{a,n} 1 
M{a2d M{a22} ... M{a2n} 

M{A} = . '. . . . . . . . . . . 
M{anl} M{and ... M{ann} 

3. Extending the theory to the periodic case (some results) 

In general, the modeling of eeologieal networks by autonomous system (4) is 
a consequence of considering several parameters as constants. Nevertheless, 
sorne ,of them can experiment seasonal ar cyclic variations (birth rates, 
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death rates, migration rates, inputs of resources, etc.). In consequence, 
the exclusive use of (4) can limit in some cases the study of directjindirect 
effects described in the previous section. By this reason, we consider the 
more general case described by (1). 

Let us consider a press perturbation to the network (1) 

{

Xl ~g¡(t,x¡, ... ,xn)+z¡, 

X n - gn(t, Xl,·.·, Xn) + Zn. 

(15) 

The implicit function theorem allows us to prove the following result 3: 

Proposition 3.1. Jf (PI) is satisfied and the perturbations z satisfy the 
inequality 

J zr + Z~ + ... + z; < O (16) 

for some O > ° sufficiently smal!, then the system (15) has a unique solution 

q( t, z) = col (q¡ (t, Z¡, ... , zn), ... , qn (t, Z¡, ... , zn)), (17) 

which is continous and w-periodic in t and differentiable in z satisfying 
(16). Jn addition, q(t,O) = p(t). 

Proposition 3.1 allow us to define a generalized sensitivity matrix as 
follows: 

S(t) = {Sij(t)} with 

with qi(t, z) given by (17). 

aqi 
SiJ(t) = ,,(t,O), 

uZj 

Lemma 3.1. The sensitivity matrix (18) is w-periodic. 

(18) 

Proof. Let ej = (o¡j, 02j, ... , Onj), where Oij = ° when i = j and ° other
wise. Observe that: 

aqi(t ) _ l. qi(t+w,z+Llej) -qi(t+W,Z) 
~ +w,z - 1m 
uZj -Ó.--tO .ó.. 

_ r qi(t,z+Llej)-qi(t,z) 
-Al~O ~ , 

where the last identity follows from w-periodicity of q(., z), ensured by 
Proposition 3.1. In,+,onsequence, we have that 

aqi aqi 
,,(t +w,z) = ,,(t,z) 
UZj UZj 
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and the Lemma follows by letting z --+ O. o 

Theorem 3.1. The sensitivity matrix satisfy the identity: 

11w 

- A(t)8(t) dt = -l. 
w o 

(19) 

Given an w-periodic function B(·), we can define its A-weighted average 
as follows: 

11w 

MA{B} = - A(t)B(t) dt. 
w o 

On the other hand, we can define an equivalence relation in the set 
w-periodic matrices: 

In consequenc€, the sensitivity matrix has to be in the same equivalence 
class of -AO-" which means that 8(·) and -A-lO differs only in a 
function with null A-weighted average. 

By using the covariance definition (14) for the matrices A(t) and 8(t), 
we obtain the following identity: 

Corollary 3.1. The sensitivity matrix satisfy the identity: 

(20) 

Proof. Observe that 

11w 

cov(A,8) = - [A(r) - M {A}][8(r) - M{8}] dr, 
w o 

11w 11w 

= - A(r)8(r) dr - - A(r) drM{8} 
w O w O 

11w 

-M{A}- 8(r) dr + M{A}M{8}, 
w o 

= -1 - M{A}M{8}, 

where the last identity is ensured by (19). o 

Observe that (4) is a particular case of (1). In this context, (CI)-(C2) 
is a particular case of (PI). By using (13), it follows that when A and 8 
are constants, then cov(A,8) = O and (20) reduces to (9). 
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4. Conclusion and future directions 

The study of time-varying ecological networks presents several difficulties 
in comparison with stationary ones. Indeed, from a mathematical point of 
view, the network (1) is a non-autonomous ODE system, whose qualitative 
theory is far more complex (and less complete) in comparison with the 
autonomous case. On the other hand, from an ecological point of view, 
Lemma 3.1 suggests that the total effects matrix has cyclical variations: 
these facts make interesting and at the same time difficult the study of 
directjindirect effects in (1): to determinate which results obtained for 
autonomous models remain valid for time varying ones is an open question. 

We have deduced some identities concerning the sensitivity matrix for 
an w-periodic ecological network having a unique locally asymptotically 
stable periodic solution. The Theorem 3.1 and Corollary 3.1 can be seen 
as averaged versions of identity (9). 

This note is a first stage to studying indirect effects in time varying 
ecological networks. Indeed, several problems remain to be solved. They 
are summarized as follows: 

o In an w-periodic context, we hope to use identities (19)-(20) in 
order to obtain similar results as those described in Remark 1.4. In 
particular, to quantify the relation between directjindirect effects. 

o To consider the network (1) as a perturbation of the averaged sys
tem: 

y' = J(y) = - g(t, y) dt. 11W 

w o 

This autonomous system (in special, when has an stable equi
librium) is interesting since provides another way to consider "in 
average" the directjindirect effects. In this case, it is easy to com
pute its sensitivity matrix. An open question is to study its relation 
with the sensitivity matrix (18). 

o It would be of interest to extend this analysis to the case where 
the network (1) is Bohr almost periodic 7 with respect to t. This is 
reasonable since almost periodic motions have biological sense and 
its average properties generalizes the periodic ones. 

o It is necessary to compare Our approach with other works consider
ing time variable ecological networks: the work of Takimoto et. al. 
19 considers"~ system of one consumerj two resources and one sub
sidy, which has periodical inputs. The autors employ a method of 
time scale separation combined with press perturbations and dis-
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covers that the time scale hierarchy helps to study indirect effects. 
In addition, the work of Borret et.al. 2 studies the relation between 
the length of paths i -t k , -t k2 -t ... -t kp -t j and the speed 
of propagation of indirect effects by using the technique of network 
environment analysis. 

Appendix: Proof of Theorern 3.1 

By using the w-periodicity of solution q( t, z), it follows that 

qi(W,Z) -qi(O,Z) = l w 

gi(t,q,(t,Z), ... ,qn(t,z))dt+ZiW =0. 

for any i = 1, ... , n. 
Differentiating respect tú Zj and using Leibnitz's rule, we obtain. 

¡w t Ogi(t,q(t,z)) oqk(t, z) dt + Oi;W = 0, 
)0 k=l OXk oZ; 

which can be rewritten as: 

.!:. ¡w t Ogi(t, q(t, z)) oqk(t, z) dt = -Oi;, 
w)o k=l OXk oZ; 

where Oij = 1 if i = j and Oij = ° otherwise. 
On the other hand, the continuity of the functions 

og; (t, q( t, z)) Oqk (t, z) 
and q(t, z) 

oZ; 

in a neighborhood of z = 0, implies that 

lim Ogi(t, q(t, z)) = Ogi (t,p(t)) 
z-+O OXk OXk 

and 

(21) 

(22) 

lim oqk(t, z) = oqk (t, O). (23) 
z--*ü OZj OZj 

By letting z -t ° in (21) and using (22)-(23), it follows that: 

.!:. ¡w t Ogi(t,P(t)) Oqk(t, O) dt = -Oi;. 
w)o k=l OXk oZ; 

By using (11) and (18), it follows that this last equality is equivalent to 

1 r n 
-)0 ¿aik(t)sk;(t) dt = -Oi; 
W o k=l 

(24) 

which is equivalent to (19) and the Theorem follows. 






